STRONG SPLIT BLOCK DOMINATION IN GRAPHS

M. H. Muddebihal^{*}

Nawazoddin U. Patel*

Abstract:

For any graph G = (V, E), the block graph B(G) is a graph whose set of vertices is the union of the set of blocks of G in which two vertices are adjacent if and only if the corresponding blocks of G are adjacent. A dominating set D of a graph B(G) is a strong split block dominating set if the induced sub graph $\langle V[B(G)] - D \rangle$ is totally disconnected with at least two vertices. The strong split block domination number $\gamma_{ssb}(G)$ of G is the minimum cardinality of strong split block dominating set of G. In this paper, we study graph theoretic properties of $\gamma_{ssb}(G)$ and many bounds were obtain in terms of elements of G and its relationship with other domination parameters were found.

Keywords: Dominating set/ independent domination/Block graph /strong split block domination.

Subject Classification number: 05C69, 05C70.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research http://www.ijmra.us

<u>ISSN: 2347-6532</u>

1. Introduction: In this paper, all the graphs consider here are simple and finite. For any undefined terms or notations can be found in Harary [2]. In general, we use $\langle X \rangle$ to denote the subgraph induced by the set of vertices X and N(v)(N[v]) denote open (closed) neighborhoods of a vertex v.

The notation $\alpha_o(G)(\alpha_1(G))$ is the minimum number of vertices (edges) in a vertex (edge) cover of G. The notation $\beta_o(G)(\beta_1(G))$ is the maximum cardinality of a vertex (edge) independent set in G. Let deg(v) is the degree of vertex v and as usual $\delta(G)(\Delta(G))$ is the minimum (maximum) degree. A block graph B(G) is the graph whose vertices corresponds to the blocks of G and two vertices in B(G) are adjacent if and only if the corresponding blocks in G are adjacent.

We begin by recalling some standard definitions from domination theory. A dominating set D of a graph G = (V, E) is an independent dominating set if the induced subgraph < D > has no edges. The independent domination number i(G) of a graph G is the minimum cardinality of an independent dominating set.

The concept of Roman domination function (RDF) was introduced by E.J. Cockayne, P.A.Dreyer, S.M.Hedetiniemi and S.T.Hedetiniemi in [1]. A Roman dominating function on a graph G = (V, E) is a function $f: V \rightarrow \{0,1,2\}$ satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex of v for which f(v) = 2. The weight of a Roman dominating function is the value $f(V) = \sum_{v \in V} f(v)$. The Roman domination number of a graph G, denoted by $\gamma_R(G)$, equals the minimum weight of a Roman dominating function on G. A dominating set D of a graph B(G) is a strong split block dominating set if the induced subgraph $\langle V[B(G)] - D \rangle$ is totally disconnected. The strong split block domination number $\gamma_{ssb}(G)$ of G is the minimum cardinality of strong split block dominating set of G. In this paper, many bounds on $\gamma_{ssb}(G)$ were obtained in terms of elements of G but not the elements of B(G). Also its relation with other domination parameters were established.

We need the following theorems for our further results.

Theorem A [3]: For any graph $G, \gamma(G) \ge \left[\frac{p}{1+\Delta(G)}\right]$.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research http://www.ijmra.us

2. Results:

Theorem 1: For any (p,q) graph G with n-blocks and $B(G) \neq K_P$, then

 $\gamma_{ssb}(G) + \gamma(G) \le n(G)$.

Proof: Suppose $B = \{b_1, b_2, b_3, \dots, b_n\}$ is the set of blocks in *G*. Then $\{B\} = V[B(G)]$. Let $A = \{b_1, b_2, b_3, \dots, b_i\}, 1 \le i \le n$ such that $A \subseteq B$ and $\forall b_i \in A$ are the non- end blocks in *G* which gives cut vertices in B(G). Also $C = \{b_1, b_2, b_3, \dots, b_j\}, 1 \le j \le n$ be the set of end blocks in *G* and $C \subseteq B$. Let $\{v_1, v_2, v_3, \dots, v_p\}$ be the set of vertices of *G* and $D = \{v_1, v_2, v_3, \dots, v_m\}$ where $m \le p$ be a dominating set of *G* such that $\gamma(G) = |D|$. Now we consider $A^1 \subset A$ and $C^1 \subset C$. Then $V[B(G)] - \{A^1\} \cup \{C^1\} = \{K\} \forall v \in K$ is an isolates. Hence $|A^1| \cup |C^1| = \gamma_{ssb}(G)$. Since $\{A\} \cup \{C\} = V[B(G)]$. Clearly $|A^1| \cup |C^1| + |D| \le |A| \cup |C|$ which gives $\gamma_{ssb}(G) + \gamma(G) \le n(G)$.

Theorem 2: For any (p,q)graph G and $B(G) \neq K_P$, then $\gamma_{ssb}(G) \leq \beta_o(G) - 1$. Where $\beta_o(G)$ is the maximal vertex independence number of G.

Proof: Suppose $B = \{B_1, B_2, B_3, \dots, B_n\}$ be the set of blocks in G and let $H = \{b_1, b_2, b_3, \dots, b_n\}$ be the set of vertices which corresponds to the blocks of B such that V[B(G)] = |H|.

Now we consider the following cases.

Case 1: Suppose G is a tree with at least 3-blocks. For at most two blocks B(G) is complete hence $\gamma_{ssb}(G)$ set does not exists. For this we consider a tree with at least 3-blocks. Suppose $V = \{v_1, v_2, v_3, \dots, v_p\}$ be the set of vertices of G and $D = \{v_1, v_2, v_3, \dots, v_i\}$ for $i \leq p$ be the maximal independence set of vertices of G, such that $|D| = \beta_o(G)$.

Let $C = \{b_1, b_2, b_3, \dots, b_i\}$ be the set of cut vertices in B(G). Since each block in B(G)is complete and each cut vertex is incident with at least two blocks. Let $C^1 = V[B(G)] - C$ and consider a set $C_1^1 \subseteq C^1$ such that $V[B(G)] - \{C^1 \cup C_1^1\} = S$ where $\forall b_i \in S$ is an isolates. Hence $|C^1 \cup C_1^1| = \gamma_{ssb}(G)$. Also $|C^1 \cup C_1^1| < |D| - 1$ which gives $\gamma_{ssb}(G) \le \beta_o(G) - 1$.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research http://www.ijmra.us

Case 2: Suppose *G* is a not tree then there exists at least a block which is not an edge. Let B_i be the number of blocks which are not edges $V[B_i] \subset V[B(G)]$. Let $\{b_1, b_2, b_3, \dots, b_n\}$ be the set of vertices of B(G) corresponding to the blocks $\{B_1, B_2, B_3, \dots, B_n\}$ respectively in *G*. Suppose D^1 is a dominating set of B(G) such that $|D^1| = \gamma_{ssb}(G)$. Since $|D^1| \leq |D|$, then $\gamma_{ssb}(G) \leq \beta_o(G) - 1$.

ISSN: 2347-6532

Theorem 3: For any non-trivial tree *T* and $B(T) \neq K_P$, then $\gamma_{ssb}(T) \ge \gamma(T)$. Equality holds for a path P_p with $P \ge 5$.

Proof: Suppose $V = \{v_1, v_2, v_3, \dots, v_p\}$ be the set of vertices of T. Let $D = \{v_1, v_2, v_3, \dots, v_k\}$ $1 \le k \le p$ be a minimal dominating set of T such that $|D| = \gamma(T)$. Further $B = \{B_1, B_2, B_3, \dots, B_n\}$ be the number of blocks in T. In $B(T), V[B(T)] = \{b_1, b_2, b_3, \dots, b_n\}$ be the set of vertices corresponding to the blocks $\{B_1, B_2, B_3, \dots, B_n\}$ of T. In B(T) each blocks is complete. Let $\{B_1^{-1}, B_2^{-1}, B_3^{-1}, \dots, B_p^{-1}\}$ be the set of blocks in B(T) with the property such that $\forall B_i, 1 \le i \le p$ has at least two vertices. From each block in B(T), p - 1 numbers of vertices forms a dominating set D^1 such that $|D^1| = \gamma_{ssb}(T)$. Hence $|D| \le |D^1|$, which gives $\gamma_{ssb}(T) \ge \gamma(T)$. For equality, suppose $T = P_p$ with $P \le 4$. If $B(T) = k_{1,2}$, which gives $\gamma_{ssb}(T) \ge \gamma(T)$ for $P = 2,3, \gamma_{ssb}(T)$ does not exists. Hence we consider $T = P_p$ with $P \ge 5$. Suppose $T = P_p$ with $P \ge 5$.

Let $T = P_p$: $\{v_1, v_2, v_3, \dots, v_p\}$ be a path with $P \ge 5$ then we consider a set $D = \{v_2, v_5, v_8, \dots, v_{p-n}\}$ such that $N(v_{p-n}) \cap N(v_{p-n-1}) = \emptyset$. Hence D be a γ - set of P_p . In $B(P_p), V[B(P_p)] = P - 1$, then we consider a set $K \subset V[B(P_p)]$ such that $V[B(P_p)] - K = M$ where each element in M is an isolate. Clearly |M| = |D| which gives $\gamma_{ssb}(P_p) = \gamma(P_p)$.

We have the following proposition.

Proposition 1: If B(G) is a star, then $\gamma_{ssb}(G) = 1$.

Theorem 4: For any connected (p,q) graph G and $B(G) \neq K_P$, then $\gamma_{ssb}(G) + \gamma(G) \leq P - 1$.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research http://www.ijmra.us

October 2014

<u>ISSN: 2347-6532</u>

Proof: Let *G* be a connected graph with *P* -vertices and *n*- blocks. Let $\{b_1, b_2, b_3, \dots, b_n\}$ be the number of vertices in *B*(*G*) corresponding to the blocks $\{B_1, B_2, B_3, \dots, B_n\}$ in *G*. Let $H = \{v_1, v_2, v_3, \dots, v_n\}$ be the set vertices in *G*, $J = \{v_1, v_2, v_3, \dots, v_i\}$ where $1 \le i \le n$ such that $J \subset H, v_i \in J$ which covers all the vertices of *G* and there does not exists any proper sub set J^1 of *J* such that $v_k \in H - J^1$ for which $N(v_k) \cap J^1 \ne u$ where $u \in J^1$. Hence *J* is a minimal dominating set of *G* and $|J| = \gamma(G)$.

Let $S_1 = \{B_i\}$ where $1 \le i \le n$, $S_1 \subset S$ and $\forall B_i \in S_1$ are non end blocks in G. The we have $M_1 \subset M$ which corresponding to the elements of S_1 such that M_1 forms a minimal dominating set of B(G). Since each element of $H - M_1$ is an isolates then $|M_1| = \gamma_{ssb}(G)$. Further $M_1 \cup J \le P - 1$, which gives $\gamma_{ssb}(G) + \gamma(G) \le P - 1$.

Theorem 5: For any non-trivial tree T and $B(T) \neq K_P$, then $\gamma_{ssb}(T) \leq 2\alpha_o(T) - 1$. Where $\alpha_o(T)$ is the vertex covering number of G.

Proof: Suppose $B(T) = K_p$. Then $\gamma_{ssb} - set$ does not exists. We consider a non-trivial tree T with $V(T) = \{v_1, v_2, v_3, \dots, v_p\}$. Let $V_1 = \{v_1, v_2, v_3, \dots, v_l\}, 1 \le i \le p$ be the set of cut vertices which are adjacent to end vertices and $V_2 = \{v_1, v_2, v_3, \dots, v_l\}, 1 \le l \le p$ be the set of cut vertices such that $\forall v_k \in N(v_l)$ are non-end vertices $1 \le l \le p$. Suppose a set $v_j \subseteq V_1$ or V_2 . Then we consider another subset $V_2^{-1} = \{v_1, v_2, v_3, \dots, v_n\}, 1 \le n \le l$ which are at a odd distance from the vertices of T with $\deg(v_p) \ge 3$. Then every vertex belongs to $V_1 \cup V_2 \cup V_j \cup V_2^{-1}$ which covers all the edges of T. Hence $|V_1| \cup |V_2| \cup |V_j| \cup |V_2^{-1}| = \alpha_o(T)$. In B(T), each block is complete. And to get $\gamma_{ssb}(T)$. We consider the following cases.

Case 1: Suppose each block of B(T) is an edge. Then $H = \{v_1, v_2, v_3, \dots, v_n\} \subset V[B(T)]$ are in alternate sequence such that $\forall v \in V[B(T)] - H$ is an isolates. Hence H is a γ_{ssb} -set and α_o - set. Clearly $|H| = \gamma_{ssb}(T) = \alpha_o(T)$. Which gives the equality of the result.

Case 2: Suppose there exist at least one block of B(T) which is not an edge. Now assume each block of B(T) is a complete graph with $P \ge 2$ vertices. Let H be a γ_{ssb} -set of B(T) which contains P - 1 vertices from each block of B(T). Since B(T) has n number of blocks, then

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research http://www.ijmra.us

 $n[P-1]\epsilon V[B(T)] = H.\text{Hence } 2\{|V_1| \cup |V_2| \cup |V_j| \cup |V_2^1|\} - 1 = |H|, \text{ which}$ gives $\gamma_{ssb}(T) \le 2\alpha_o(T) - 1.$

Theorem 6 : For any (p,q) graph G with n - blocks and $B(G) \neq K_p$, then

$$\gamma_{ssb}(G) \le n + \gamma(G) - 4.$$

Proof: Suppose $S = \{B_1, B_2, B_3, \dots, B_n\}$ be the blocks of G. Then $M = \{b_1, b_2, b_3, \dots, b_n\}$ be the corresponding block vertices in B(G) with respect to the set SLet $H = \{v_1, v_2, v_3, \dots, v_n\}$ be the set of vertices in G, such that V(G) = H. If $J = \{v_1, v_2, v_3, \dots, v_m\}$ where $1 \le m \le n$ and $J \subset H$ such that N(J) = V(G) - J gives a minimal domination set in G. Hence $|J| = \gamma(G)$.

Suppose $M^1 = \{b_1, b_2, b_3, \dots, b_j\}$ where $1 \le j \le n$ such that $M^1 \subset M$ then $\forall b_i \in M^1$ are cut vertices in B(G). Further $M^{11} \subset M$ be a set of vertices in B(G) such that $V[B(G)] - \{M^1 \cup M^{11}\} = N$ where $\forall v_i \in N$ is an isolates. Hence $|N| = \gamma_{ssb}(G)$. In B(G)each block is complete with $P \ge 2$ vertices. Then $|N| \le n + |J| - 4$ which gives $\gamma_{ssb}(G) \le n + \gamma(G) - 4$.

Theorem 7: For any non-trivial tree T and $B(T) \neq K_P$, then $\gamma_{ssb}(T) \leq \gamma_R(T)$.

Proof: Let $f = (V_0, V_1, V_2)$ be any γ_R -function of T. Then V_2 is a γ - set of $H = G[V_0 \cup V_2]$ such that $|H| = \gamma_R(T)$.

Next we consider $\{b_1, b_2, b_3, \dots, b_n\}$ be the set of vertices of B(T) corresponding to the blocks $\{B_1, B_2, B_3, \dots, B_n\}$ of T. Let $D^1 = \{b_1, b_2, b_3, \dots, b_m\}$ where m < n is a minimal dominating set of B(T) such that $V[B(T)] - D^1 = N, \forall v_i \in N$ is a isolates, then $|D^1| = \gamma_{ssb}(T)$. Hence $\gamma_{ssb}(T) = |D^1| \le |H| = \gamma_R(T)$ which gives $\gamma_{ssb}(T) \le \gamma_R(T)$.

Theorem 8: For any non-trivial tree $T \neq P_4$ and $B(T) \neq K_P$, then $\gamma_{ssb}(T) \geq \gamma(T)$. Equality holds if $T = P_n$ with n = 1, 2, ..., 7 and H where H is $k_{1,3}$ together with an end edge adjoined at most three end vertices.

Proof: Suppose $T = P_4$. Then $B(T) = K_{1,2}$, $\gamma_{ssb} = 1 \neq \gamma(T)$. Now we consider a tree $T \neq P_4$. Let $V = \{v_1, v_2, v_3, \dots, v_n\}$ be the set of vertices in T. Let

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research

http://www.ijmra.us

Volume 2, Issue 10

<u>ISSN: 2347-6532</u>

 $V_1 = \{v_1, v_2, v_3, \dots, v_k\}, \ 1 \le k \le n$ be the cut vertices of G set of $V_2 = \{v_1, v_2, v_3, \dots, v_j\}, 1 \le j \le k$ such that $V_2 \subset V_1$ and $|V_2| = \gamma(T)$. Let E = $\{e_1, e_2, e_3, \dots, \dots, e_i\}$ be the set of non-end edges in T. In B(T), V[B(T)] = E[T]. Since each edge is a block, then $\{e_1, e_2, e_3, \dots, e_i\} \in V[B(T)]$ are cut vertices and each e_i lie an exactly two blocks of B(T). Now $V[B(T)] - E, E \in V[B(T)]$ gives e_i number of components and each component is again a complete graph. Since one less than P number of vertices from each block of B(T) are removed, then we get a null graph. Hence E_1 and E_2 represent the cut vertex set and other vertices of P_i components. Hence $E_1 \cup E_2$ is a γ_{ssb} - set which gives $|E_1 \cup E_2| = \gamma_{ssb}(T)$. Suppose $\Delta(T) \ge 2$. Then $|E_1 \cup E_2| \ge |V_2|$ which gives $\gamma_{ssb}(T) \ge \gamma(T)$.

Theorem 9: For any (p,q) graph G, and $B(G) \neq K_{p}$, then $\gamma_{ssb}(G) \leq \left[\frac{P.\Delta(G)}{2+\Delta(G)}\right]$.

Proof: We consider only those graphs which are not $B(G) = K_p$. let D be a $\gamma_{ss} - set$ of B(G) it follows that for each vertex $v \in D$ there exist a vertex $u \in V[B(G)] - D$. such that v is adjacent to u. Since each block in B(G) is a complete, this implies that V[B(G)] - D is a dominating set of B(G) such that $\forall v_i \in V[B(G)] - D$ is an isolates. By Theorem A, we have $\gamma_{ssb}(G) \leq \left[\frac{P \cdot \Delta(G)}{2 + \Delta(G)}\right]$.

Theorem 10: For any (p,q) non-trivial tree T and $B(T) \neq K_P$, then $\gamma_{ssb}(T) \leq \left[\frac{q+M(T)}{2}\right] - 1$. where M(T) is the number of end vertices in T.

Proof: We consider a tree $T \neq K_{1,n}$ $n \ge 1$. Let T be a tree with $q \ge 3$ edges, $E(T) = \{e_1, e_2, e_3, \dots, e_n\}$. Now $H = \{v_1, v_2, v_3, \dots, v_n\}$ be the set of vertices which corresponds to the set of edges in E(T). Let $D = \{v_1, v_2, v_3, \dots, v_i\}$, $1 \le i \le n$, and $\forall v_j \in \{H - D\}$ is adjacent to at least one $v_i \in D$. Since each edge is a block in T, then D is a dominating set of B(T). Suppose B(T) is a path with even number of vertices. Then $v \in D$ is an end vertex in B(T). Suppose B(T) is a path with odd number of vertices. Then $v \notin D$. Hence $|D| \le \left[\frac{q+M(T)}{2}\right] - 1$.

Suppose *T* is not a path. Then there exists at least one vertex *v* with $degv \ge 3$. Let $L = \{v_1, v_2, v_3, \dots, v_k\} \forall v_k, deg [v_k] \ge 3$ and $E_1 = \{e_1, e_2, e_3, \dots, e_k\}$ be the edges in

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research http://www.ijmra.us

Volume 2, Issue 10

T incident with $v_k \in L$. Suppose $E_2 \subset E_1$ which are non end edges in *T*. Then $|E_2| \cup |E_1| = M$. Suppose $E_3 = \{e_1, e_2, e_3, \dots, e_j\}$, $1 \le j \le k$, $E_3 \subset \{E_2 \cup E_1\} \forall v_i \in E_3$ is an element of E_2 or E_1 and hence $\{E_3\} \subset V[B(T)]$ and $\{E_1 \cup E_2 \cup E_3\} = D$ and $|E_1 \cup E_2 \cup E_3| = q + M$ thus $\{E_1 \cup E_2 \cup E_3\} \le \frac{\{E_1 \cup E_2\} + \{E(T)\}}{2} - 1$ hence $\gamma_{ssb}(T) \le \left[\frac{q+M(T)}{2}\right] - 1$.

ISSN: 2347-6532

Theorem 11: For any (p, q) non-trivial tree T and $B(T) \neq K_P$, then

$$\gamma_{ssb}(T) + 2\gamma_c(T) \ge \gamma_t(T) + \Delta(T).$$

Proof: Suppose *G* is a tree, $F = \{v_1, v_2, v_3, \dots, v_n\}$ be the set of all end vertices of *G* and $V^1 = V - F$. Then $D^1 \subseteq V^1$ is a minimal connected dominating set of *G*. Further if $\{v_j\} \in N(D^1)$ and $\{v_j\} \subseteq V^1$, then $D^1 \cup v_j$ forms a minimal total dominating set of *G*. If $\{v_j\} = \emptyset$, then there exists at least one vertex $v \in F$ such that $D^1 \cup \{v\}$ forms a total dominating set of *G*. Let $D = \{u_1, u_2, u_3, \dots, u_k\}$ be the dominating set of B(T). If the neighbors of each $u_i \ 1 \le i \le k$ are at a distance at least two which generates *D* to be a minimal dominating set of *B*(*T*) such that V[B(T)] - D = X where $\forall v_i \in X$ is an isolates. Hence |D| a $\gamma_{ssb} - set$ of *T*. Suppose $V^1 = \{v_1, v_2, v_3, \dots, v_k\} \subseteq V(G)$ such that deg $(v_i) \ge 2, 1 \le i \le k$. Then there exists at least one vertex $v \in V^1$ such that deg $(v) = \Delta(T)$. Now we have $|D| + 2|D^1| \ge |D^1 \cup \{v_j\}| + \Delta(T)$ which gives $\gamma_{ssb}(T) + 2\gamma_c(T) \ge \gamma_t(T) + \Delta(T)$.

Theorem 12: For any tree *T* and $B(T) \neq K_P$, then $i(T) \geq \gamma_{ssb}(T)$ where i(T) is a independent domination number.

Proof: Suppose *D* be a dominating set of *T*. Let *v* be an end vertex of *T* and root the tree *T* at *v*. Let *A* be the set of all vertices in V(T) - D that are dominated only from above by a vertex in *D*. Thus the parent of each vertex in *A* belongs to *D* and no child vertex of *A* belongs to *D*. Possibly $A = \emptyset$. Let $B = V(T) - (A \cup D)$. Then every vertex of *B* is dominated from below by *D* that is every vertex *B* has a child that belongs to *D*. Let B_1 be those vertices in *B* adjacent to vertex in *A*. Then B_1 is an independent set of *T* and dominates *A* (from below). We now extend B_1 to an independent set B^* that dominates *B* by adding vertices in $B - B_1$. Then B^* dominates $A \cup B$. Let D_1 be the set of all vertices of *D* that are dominated by B^* and $D_1 = D \cap N(B^*)$. Since every vertex in *B* is dominated from below by at least one vertex of *D*, then $|B^*| \ge |D_1|$. Let

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research http://www.ijmra.us

Volume 2, Issue 10

<u>ISSN: 2347-6532</u>

 $D_2 = D - D_1$, and let D^* be a maximal independent set of vertices of D_2 . Then D^* dominates D_2 . Further more $|D^*| \ge |D_2|$. By construction, $B^* \cup D^*$ is an independent dominating set of T. Hence $|B^* \cup D^*| = i(T)$. Since every block in B(T) is complete and every cut vertex of B(T) lies on exactly two blocks of B(T). Let $k_{n_1}k_{n_2}, \ldots, k_{n_m}$ be the number of blocks which are complete. Then each block is complete with $\{v_1, v_2, \ldots, v_{n_1}\} \in k_{n_1}, \ldots, \{v_1, v_2, \ldots, v_{n_2}\} \in k_{n_2}, \ldots, \{v_1, v_2, \ldots, v_{n_m}\} \in k_{n_m}$, number of vertices.

Now assume S be a dominating set of B(T) and

 $S = \{v_1, v_2, \dots, v_i; v_1, v_2, \dots, v_j; v_1, v_2, \dots, v_k, \dots, v_k \dots, v_Z\} \text{ such that } 1 \le i \le n_1; \dots, \dots, 1 \le j \le n_2; \dots, \dots, 1 \le Z \le n_m; \forall v_i \in k_{n_1}; \dots, \dots, v_J \in k_{n_2}; \dots, \dots, \forall v_Z \in k_{n_m}.$ Now V[B(T)] - S = H where each vertex of H is an isolates which gives $|S| = \gamma_{ssb}(T)$. Hence $|B^* \cup D^*| \ge |S|$ and we have $i(T) \ge \gamma_{ssb}(T)$.

Theorem 13: For any (p,q) graph G and $B(G) \neq K_P$, then $\gamma_{ssb}(G) \leq 3q - 2p$.

Proof: suppose G has a block say B with maximum number of vertices and edges. Then 3q - 2p is always more with $\gamma_{ssb}(G)$. Hence we require to get the sharp bound. For this we consider the graph G is a non-trivial tree with at least 3-blocks.

We consider the following cases.

Case 1: Suppose G is a path $P_n, n \ge 4$ vertices. Then $B(G) = P_{n-1}$. Since the path P_n has p -vertices and q - edges, then 3q - 2p = 3(p-1) - 2p = p - 3 for $P \ge 4$. One can easily verify that $\gamma_{ssb}(G) \le p - 3 = 3q - 2p$.

Case 2: Suppose G is not a path. Then there exists at least one vertices $v, degv \ge 3$. Let $C = \{v_1, v_2, v_3, \dots, v_i\}$ be the number cut vertices and D be a dominating set of B(G). Suppose each block of B(G) complete with P-vertices. Then $D = \{v_1, v_2, v_3, \dots, v_{p-1}\}$ where D consists of P-1vertices from each block B(T) such that

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research http://www.ijmra.us

D = H where $u \in H$ is an isolates clearly $|D| = v = (T) \leq n = 3$

ISSN: 2347-6532

 $C \subseteq D$ and V[B(T)] - D = H, where $v_i \in H$ is an isolates, clearly $|D| = \gamma_{ssb}(T) \le p - 3 = 3q - 2p$.

Theorem 14: For any (p, q) non-trivial tree *T* and $B(T) \neq K_n$, then

$$\gamma_{ssb}(T) + \gamma_t(T) \ge +P - \Delta(T).$$

Proof: Suppose $B(T) = K_n$. Then by definition $\gamma_{ssb}(T) - set$ does not exist. Hence and $B(T) \neq K_n$. Assume *T* is a tree. Then every block of *T* is an edge. Let $A = \{B_1, B_2, B_3, \dots, B_n\}$ be the blocks of *T* and $M = \{b_1, b_2, b_3, \dots, b_n\}$ be the block vertices in B(T) corresponding to the blocks of *A*.

Let $\{B_i\} \subset A$ such that each B_i is an non end block of T. Then $\{b_i\} \subseteq V[B(T)]$ which are vertices corresponding to the set $\{B_i\}$ since each block is complete in B(T). Again we consider a subset $\{b_i^1\}$ such that $\{b_i^1\} \subset V[B(T)] - \{b_i\}$. Suppose there consists at least one edge then $V[B(T)] - \{b_i^1 \cup b_i\} = \{b_k\}$ where each element of b_k is an isolates. Then $|\{b_i^1 \cup b_i\} = \gamma ssbT$. If $bi1 = \emptyset$, then $VBT - \{bi\}$ give at least two isolates such that $bi = \gamma ssbT$. Let $S \subseteq V[B(T)]$ is minimal total dominating set of T such that $\gamma_t(T) = |S|$. Now assume $\Delta(T) \leq$ 2. Then $T = P_n, n \geq 4$. Hence $P - \Delta(T) \leq |b_i^1| + |S|$ which gives $\gamma_{ssb}(T) + \gamma_t(T) \geq +P - \Delta(T)$.

Further if $\Delta(T) \ge 3$. Then there exists a positive integer j such that $j \le P - \Delta(T)$. Also $j \le |b_i^1| + |S|$ which gives $P - \Delta(T) \le \gamma_{ssb}(T) + \gamma_t(T)$.

Finally we obtained the Nordhous-Gaddum type results.

Theorem 15: For any (p, q) graph G, and $B(G) \neq K_P$, then

- I. $\gamma_{ssb}(G) + \gamma_{ssb}(\overline{G}) \le p$.
- II. $\gamma_{ssb}(G) \cdot \gamma_{ssb}(\overline{G}) \le 2p.$

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research

http://www.ijmra.us

<u>ISSN: 2347-6532</u>

References:

- 1. E.J.Cockayne, P.A.Dreyer. Jr,S.M.Hedetiniemi and S.T.Hedetiniemi, Roman domination in graphs, Discrete maths,278(2004),11-22.
- 2. F.Harary, graph Theory, Adison Wesley, Reading mass, (1972).
- **3.** T.W.Haynes,S.T.Hedetiniemi and P.J.Slater, Fundamentals of domination in graphs. Marcel-Dekker,Inc.(1997).

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research

http://www.ijmra.us