STRONG SPLIT BLOCK DOMINATION IN GRAPHS

M. H. Muddebihal ${ }^{*}$

Nawazoddin U. Patel*

Abstract

:

For any graph $G=(V, E)$, the block graph $B(G)$ is a graph whose set of vertices is the union of the set of blocks of G in which two vertices are adjacent if and only if the corresponding blocks of G are adjacent. A dominating set D of a graph $B(G)$ is a strong split block dominating set if the induced sub graph $\langle V[B(G)]-D\rangle$ is totally disconnected with at least two vertices. The strong split block domination number $\gamma_{s s b}(G)$ of G is the minimum cardinality of strong split block dominating set of G. In this paper, we study graph theoretic properties of $\gamma_{s s b}(G)$ and many bounds were obtain in terms of elements of G and its relationship with other domination parameters were found.

Keywords: Dominating set/ independent domination/Block graph/strong split block domination.

Subject Classification number: 05C69, 05C70.

[^0]1. Introduction: In this paper, all the graphs consider here are simple and finite. For any undefined terms or notations can be found in Harary [2]. In general, we use $<X>$ to denote the subgraph induced by the set of vertices X and $N(v)(N[v])$ denote open (closed) neighborhoods of a vertex v.

The notation $\quad \alpha_{o}(G)\left(\alpha_{1}(G)\right)$ is the minimum number of vertices (edges) in a vertex (edge) cover of G. The notation $\beta_{o}(G)\left(\beta_{1}(G)\right)$ is the maximum cardinality of a vertex (edge) independent set in G. Let $\operatorname{deg}(v)$ is the degree of vertex v and as usual $\delta(G)(\Delta(G))$ is the minimum (maximum) degree. A block graph $B(G)$ is the graph whose vertices corresponds to the blocks of G and two vertices in $B(G)$ are adjacent if and only if the corresponding blocks in G are adjacent.

We begin by recalling some standard definitions from domination theory. A dominating set D of a graph $G=(V, E)$ is an independent dominating set if the induced subgraph $<D>$ has no edges. The independent domination number $i(G)$ of a graph G is the minimum cardinality of an independent dominating set.

The concept of Roman domination function (RDF) was introduced by E.J. Cockayne, P.A.Dreyer, S.M.Hedetiniemi and S.T.Hedetiniemi in [1]. A Roman dominating function on a graph $G=(V, E)$ is a function $f: V \rightarrow\{0,1,2\}$ satisfying the condition that every vertex u for which $f(u)=0$ is adjacent to at least one vertex of v for which $f(v)=2$. The weight of a Roman dominating function is the value $f(V)=\sum_{v \epsilon V} f(v)$. The Roman domination number of a graph G, denoted by $\gamma_{R}(G)$, equals the minimum weight of a Roman dominating function on G. A dominating set D of a graph $B(G)$ is a strong split block dominating set if the induced subgraph $\langle V[B(G)]-D\rangle$ is totally disconnected. The strong split block domination number $\gamma_{s s b}(G)$ of G is the minimum cardinality of strong split block dominating set of G. In this paper, many bounds on $\gamma_{s s b}(G)$ were obtained in terms of elements of G but not the elements of $B(G)$. Also its relation with other domination parameters were established.

We need the following theorems for our further results.
Theorem A [3]: For any graph $G, \gamma(G) \geq\left\lceil\frac{p}{1+\Delta(G)}\right\rceil$.

2. Results:

Theorem 1: For any (p, q) graph G with n-blocks and $B(G) \neq K_{P}$, then

$$
\gamma_{s s b}(G)+\gamma(G) \leq n(G)
$$

Proof: Suppose $B=\left\{b_{1}, b_{2}, b_{3}, \ldots \ldots \ldots, b_{n}\right\}$ is the set of blocks in G. Then $\{B\}=V[B(G)]$. Let $A=\left\{b_{1}, b_{2}, b_{3}, \ldots \ldots \ldots, b_{i}\right\}, 1 \leq i \leq n$ such that $A \subseteq B$ and $\forall b_{i} \epsilon A$ are the non- end blocks in G which gives cut vertices in $B(G)$. Also $C=\left\{b_{1}, b_{2}, b_{3}, \ldots \ldots \ldots, b_{j}\right\}, 1 \leq j \leq n$ be the set of end blocks in G and $C \subseteq B$. Let $\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots, v_{p}\right\}$ be the set of vertices of G and $\mathrm{D}=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots, v_{m}\right\}$ where $m \leq p$ be a dominating set of G such that $\gamma(G)=|D|$. Now we consider $A^{1} \subset A$ and $C^{1} \subset C$. Then $V[B(G)]-\left\{A^{1}\right\} \cup\left\{C^{1}\right\}=\{K\} \forall v \in K$ is an isolates. Hence $\left|A^{1}\right| \cup\left|C^{1}\right|=\gamma_{\text {ssb }}(G)$. Since $\{A\} \cup\{C\}=V[B(G)]$. Clearly $\left|A^{1}\right| \cup\left|C^{1}\right|+|D| \leq|A| \cup$ $|C|$ which gives $\gamma_{s s b}(G)+\gamma(G) \leq n(G)$.

Theorem 2: For any (p, q) graph G and $B(G) \neq K_{P}$, then $\gamma_{s s b}(G) \leq \beta_{o}(G)-1$. Where $\beta_{o}(G)$ is the maximal vertex independence number of G.

Proof: Suppose $B=\left\{B_{1}, B_{2}, B_{3}, \ldots \ldots, B_{n}\right\}$ be the set of blocks in G and let $H=$ $\left\{b_{1}, b_{2}, b_{3}, \ldots \ldots \ldots, b_{n}\right\}$ be the set of vertices which corresponds to the blocks of B such that $V[B(G)]=|H|$.

Now we consider the following cases.

Case 1: Suppose G is a tree with at least 3-blocks. For at most two blocks $B(G)$ is complete hence $\gamma_{s s b}(G)$ set does not exists. For this we consider a tree with at least 3-blocks. Suppose $V=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots, v_{p}\right\}$ be the set of vertices of G and $D=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots, v_{i}\right\}$ for $i \leq p$ be the maximal independence set of vertices of G, such that $|D|=\beta_{o}(G)$.

Let $C=\left\{b_{1}, b_{2}, b_{3}, \ldots \ldots \ldots, b_{i}\right\}$ be the set of cut vertices in $B(G)$. Since each block in $B(G)$ is complete and each cut vertex is incident with at least two blocks. Let $C^{1}=V[B(G)]-C$ and consider a set $C_{1}{ }^{1} \subseteq C^{1}$ such that $V[B(G)]-\left\{C^{1} \cup C_{1}{ }^{1}\right\}=S$ where $\forall b_{i} \in S$ is an isolates. Hence $\left|C^{1} \cup C_{1}{ }^{1}\right|=\gamma_{s s b}(G)$. Also $\left|C^{1} \cup C_{1}{ }^{1}\right|<|D|-1$ which gives $\gamma_{s s b}(G) \leq \beta_{o}(G)-1$.

Case 2: Suppose G is a not tree then there exists at least a block which is not an edge. Let B_{i} be the number of blocks which are not edges $V\left[B_{i}\right] \subset V[B(G)]$. Let $\left\{b_{1}, b_{2}, b_{3}, \ldots \ldots, b_{n}\right\}$ be the set of vertices of $B(G)$ corresponding to the blocks $\left\{B_{1}, B_{2}, B_{3}, \ldots \ldots, \ldots, B_{n}\right\}$ respectively in G. Suppose D^{1} is a dominating set of $B(G)$ such that $\left|D^{1}\right|=\gamma_{s s b}(G)$. Since $\left|D^{1}\right| \leq|D|$, then $\gamma_{s s b}(G) \leq \beta_{o}(G)-1$.

Theorem 3: For any non-trivial tree T and $B(T) \neq K_{P}$, then $\gamma_{s s b}(T) \geq \gamma(T)$. Equality holds for a path P_{p} with $\mathrm{P} \geq 5$.

Proof: Suppose $V=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots, v_{p}\right\}$ be the set of vertices of T. Let $\mathrm{D}=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots, v_{k}\right\} \quad 1 \leq k \leq p$ be a minimal dominating set of T such that $|D|=$ $\gamma(T)$. Further $B=\left\{B_{1}, B_{2}, B_{3}, \ldots \ldots, B_{n}\right\}$ be the number of blocks in T. In $B(T), V[B(T)]$ $=\left\{b_{1}, b_{2}, b_{3}, \ldots \ldots, b_{n}\right\}$ be the set of vertices corresponding to the blocks $\left\{B_{1}, B_{2}, B_{3}, \ldots \ldots \ldots, B_{n}\right\}$ of T. In $B(T)$ each blocks is complete. Let $\left\{B_{1}{ }^{1}, B_{2}{ }^{1}, B_{3}{ }^{1}, \ldots \ldots \ldots, B_{p}{ }^{1}\right\}$ be the set of blocks in $B(T)$ with the property such that $\forall B_{i}, 1 \leq i \leq p$ has at least two vertices. From each block in $B(T), p-1$ numbers of vertices forms a dominating set D^{1} such that $\left|D^{1}\right|=\gamma_{s s b}(T)$. Hence $|D| \leq\left|D^{1}\right|$, which gives $\gamma_{s s b}(T) \geq \gamma(T)$. For equality, suppose $T=P_{p}$ with $P \leq 4$. If $B(T)=k_{1,2}$, which gives $\gamma_{s s b}(T) \nsupseteq \gamma(T)$ for $P=2,3, \gamma_{s s b}(T)$ does not exists. Hence we consider $T=P_{p}$ with $P \geq 5$. Suppose $T=P_{p}$ with $P \geq 5$.

Let $T=P_{p}:\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots, v_{p}\right\}$ be a path with $P \geq 5$ then we consider a set $\mathrm{D}=\left\{v_{2}, v_{5}, v_{8}, \ldots \ldots \ldots, v_{p-n}\right\}$ such that $N\left(v_{p-n}\right) \cap N\left(v_{p-n-1}\right)=\emptyset$. Hence D be a $\gamma-\operatorname{set}$ of P_{p}. In $B\left(P_{p}\right), V\left[B\left(P_{p}\right)\right]=P-1$, then we consider a set $K \subset V\left[B\left(P_{p}\right)\right]$ such that $V\left[B\left(P_{p}\right)\right]-$ $K=M$ where each element in M is an isolate. Clearly $|M|=|D|$ which gives $\gamma_{s s b}\left(P_{p}\right)=$ $\gamma\left(P_{p}\right)$.

We have the following proposition.

Proposition 1: If $B(G)$ is a star, then $\gamma_{s s b}(G)=1$.
Theorem 4: For any connected $(p, q) \operatorname{graph} G$ and $B(G) \neq K_{P}$, then $\gamma_{s s b}(G)+\gamma(G) \leq P-1$.

Proof: Let G be a connected graph with P-vertices and n - blocks. Let $\left\{b_{1}, b_{2}, b_{3}, \ldots \ldots, b_{n}\right\}$ be the number of vertices in $B(G)$ corresponding to the blocks $\left\{B_{1}, B_{2}, B_{3}, \ldots \ldots \ldots, B_{n}\right\}$ in G. Let $H=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots, v_{n}\right\}$ be the set vertices in $G, J=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots, v_{i}\right\}$ where $1 \leq i \leq n$ such that $J \subset H, v_{i} \epsilon J$ which covers all the vertices of G and there does not exists any proper sub set J^{1} of J such that $v_{k} \epsilon H-J^{1}$ for which $N\left(v_{k}\right) \cap J^{1} \neq u$ where $u \in J^{1}$. Hence J is a minimal dominating set of G and $|J|=\gamma(G)$.

Let $S_{1}=\left\{B_{i}\right\}$ where $1 \leq i \leq n, S_{1} \subset S$ and $\forall B_{i} \epsilon S_{1}$ are non end blocks in G. The we have $M_{1} \subset M$ which corresponding to the elements of S_{1} such that M_{1} forms a minimal dominating set of $B(G)$. Since each element of $H-M_{1}$ is an isolates then $\left|M_{1}\right|=\gamma_{s s b}(G)$. Further $M_{1} \cup$ $J \leq P-1$, which gives $\gamma_{s s b}(G)+\gamma(G) \leq P-1$.

Theorem 5: For any non-trivial tree T and $B(T) \neq K_{P}$, then $\gamma_{s s b}(T) \leq 2 \alpha_{o}(T)-1$. Where $\alpha_{o}(T)$ is the vertex covering number of G.

Proof: Suppose $B(T)=K_{P}$. Then $\gamma_{s s b}-$ set does not exists. We consider a non-trivial tree T with $V(T)=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots, v_{p}\right\}$. Let $V_{1}=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots, v_{i}\right\}, 1 \leq i \leq p$ be the set of cut vertices which are adjacent to end vertices and $V_{2}=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots, v_{l}\right\}, 1 \leq l \leq p$ be the set of cut vertices such that $\forall v_{k} \epsilon N\left(v_{l}\right)$ are non-end vertices $1 \leq l \leq p$. Suppose a set $v_{j} \subseteq$ V_{1} or V_{2}. Then we consider another subset $V_{2}{ }^{1}=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots, v_{n}\right\}, 1 \leq n \leq l$ which are at a odd distance from the vertices of T with $\operatorname{deg}\left(v_{p}\right) \geq 3$. Then every vertex belongs to $V_{1} \cup V_{2} \cup$ $V_{j} \cup V_{2}{ }^{1}$ which covers all the edges of T. Hence $\left|V_{1}\right| \cup\left|V_{2}\right| \cup\left|V_{j}\right| \cup\left|V_{2}{ }^{1}\right|=\alpha_{o}(T)$. In $B(T)$, each block is complete. And to get $\gamma_{s s b}(T)$. We consider the following cases.

Case 1: Suppose each block of $B(T)$ is an edge. Then $H=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots, v_{n}\right\} \subset$ $V[B(T)]$ are in alternate sequence such that $\forall v \in V[B(T)]-H$ is an isolates. Hence H is a $\gamma_{s s b}-$ set and α_{o}-set. Clearly $|H|=\gamma_{s s b}(T)=\alpha_{o}(T)$. Which gives the equality of the result.

Case 2: Suppose there exist at least one block of $B(T)$ which is not an edge. Now assume each block of $B(T)$ is a complete graph with $P \geq 2$ vertices. Let H be a $\gamma_{s s b}$-set of $B(T)$ which contains $P-1$ vertices from each block of $B(T)$. Since $B(T)$ has n number of blocks, then
$n[P-1] \epsilon V[B(T)]=H$.Hence $2\left\{\left|V_{1}\right| \cup\left|V_{2}\right| \cup\left|V_{j}\right| \cup\left|V_{2}^{1}\right|\right\}-1=|H|$, which gives $\quad \gamma_{s s b}(T) \leq 2 \alpha_{o}(T)-1$.

Theorem 6: For any (p, q) graph G with $n-$ blocks and $B(G) \neq K_{p}$, then

$$
\gamma_{s s b}(G) \leq n+\gamma(G)-4 .
$$

Proof: Suppose $S=\left\{B_{1}, B_{2}, B_{3}, \ldots \ldots, B_{n}\right\}$ be the blocks of G. Then $M=\left\{b_{1}, b_{2}, b_{3} \ldots \ldots \ldots, b_{n}\right\}$ be the corresponding block vertices in $B(G)$ with respect to the set S Let $H=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots, v_{n}\right\}$ be the set of vertices in G, such that $V(G)=H$. If $J=$ $\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots, v_{m}\right\}$ where $1 \leq m \leq n$ and $J \subset H$ such that $N(J)=V(G)-J$ gives a minimal domination set in G. Hence $|J|=\gamma(G)$.

Suppose $M^{1}=\left\{b_{1}, b_{2}, b_{3}, \ldots \ldots \ldots, b_{j}\right\}$ where $1 \leq j \leq n \quad$ such \quad that $\quad M^{1} \subset M$ then $\forall b_{i} \in M^{1}$ are cut vertices in $B(G)$. Further $M^{11} \subset M$ be a set of vertices in $B(G)$ such that $V[B(G)]-\left\{M^{1} \cup M^{11}\right\}=N$ where $\forall v_{i} \in N$ is an isolates. Hence $|N|=\gamma_{s s b}(G)$. In $B(G)$ each block is complete with $P \geq 2$ vertices. Then $|N| \leq n+|J|-4$ which gives $\gamma_{s s b}(G) \leq n+$ $\gamma(G)-4$.

Theorem 7: For any non-trivial tree T and $B(T) \neq K_{P}$, then $\gamma_{s s b}(T) \leq \gamma_{R}(T)$.
Proof: Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be any γ_{R}-function of T. Then V_{2} is a $\gamma-$ set of $H=G\left[V_{0} \cup V_{2}\right]$ such that $|H|=\gamma_{R}(T)$.

Next we consider $\left\{b_{1}, b_{2}, b_{3}, \ldots \ldots, b_{n}\right\}$ be the set of vertices of $B(T)$ corresponding to the blocks $\left\{B_{1}, B_{2}, B_{3}, \ldots \ldots, B_{n}\right\}$ of T. Let $D^{1}=\left\{b_{1}, b_{2}, b_{3}, \ldots \ldots, b_{m}\right\}$ where $m<n$ is a minimal dominating set of $B(T)$ such that $V[B(T)]-D^{1}=N, \forall v_{i} \epsilon N$ is a isolates, then $\left|D^{1}\right|=\gamma_{s s b}(T)$. Hence $\gamma_{s s b}(T)=\left|D^{1}\right| \leq|H|=\gamma_{R}(T)$ which gives $\gamma_{s s b}(T) \leq \gamma_{R}(T)$.

Theorem 8: For any non-trivial tree $T \neq P_{4}$ and $B(T) \neq K_{P}$, then $\gamma_{s s b}(T) \geq \gamma(T)$. Equality holds if $T=P_{n}$ with $n=1,2, \ldots \ldots \ldots, 7$ and H where H is $k_{1,3}$ together with an end edge adjoined at most three end vertices.

Proof: Suppose $T=P_{4}$. Then $B(T)=K_{1,2}, \gamma_{s s b}=1 \neq \gamma(T)$. Now we consider a tree $T \neq P_{4}$. Let $V=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots, v_{n}\right\}$ be the set of vertices in T. Let
$V_{1}=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots, v_{k}\right\}, 1 \leq k \leq n$ be the set of cut vertices of G $V_{2}=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots, v_{j}\right\}, 1 \leq j \leq k$ such that $V_{2} \subset V_{1}$ and $\left|V_{2}\right|=\gamma(T)$. Let $E=$ $\left\{e_{1}, e_{2}, e_{3}, \ldots \ldots \ldots, e_{i}\right\}$ be the set of non-end edges in T. In $B(T), V[B(T)]=E[T]$. Since each edge is a block, then $\left\{e_{1}, e_{2}, e_{3}, \ldots \ldots \ldots, e_{i}\right\} \in V[B(T)]$ are cut vertices and each e_{i} lie an exactly two blocks of $B(T)$. Now $V[B(T)]-E, E \in V[B(T)]$ gives e_{i} number of components and each component is again a complete graph. Since one less than P number of vertices from each block of $B(T)$ are removed, then we get a null graph. Hence E_{1} and E_{2} represent the cut vertex set and other vertices of P_{i} components. Hence $E_{1} \cup E_{2}$ is a $\gamma_{s s b}-s e t$ which gives $\left|E_{1} \cup E_{2}\right|=\gamma_{s s b}(T)$. Suppose $\Delta(T) \geq 2$. Then $\left|E_{1} \cup E_{2}\right| \geq\left|V_{2}\right|$ which gives $\gamma_{s s b}(T) \geq \gamma(T)$.

Theorem 9: For any (p, q) graph G, and $B(G) \neq K_{p}$, then $\gamma_{s s b}(G) \leq\left[\frac{P \cdot \Delta(G)}{2+\Delta(G)}\right]$.

Proof: We consider only those graphs which are not $B(G)=K_{p}$. let D be a $\gamma_{s s}-$ set of $B(G)$ it follows that for each vertex $v \in D$ there exist a vertex $u \in V[B(G)]-D$. such that v is adjacent to u. Since each block in $B(G)$ is a complete, this implies that $V[B(G)]-D$ is a dominating set of $B(G)$ such that $\forall v_{i} \epsilon V[B(G)]-D$ is an isolates. By Theorem A, we have $\gamma_{s s b}(G) \leq\left\lceil\frac{P . \Delta(G)}{2+\Delta(G)}\right\rceil$.

Theorem 10: For any (p, q) non-trivial tree T and $B(T) \neq K_{P}$, then $\gamma_{s s b}(T) \leq\left\lceil\frac{q+M(T)}{2}\right\rceil-1$. where $M(T)$ is the number of end vertices in T.

Proof: We consider a tree $T \neq K_{1, n} n \geq 1$. Let T be a tree with $q \geq 3$ edges, $E(T)=$ $\left\{e_{1}, e_{2}, e_{3}, \ldots \ldots \ldots, e_{n}\right\}$. Now $H=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots, v_{n}\right\}$ be the set of vertices which corresponds to the set of edges in $E(T)$. Let $D=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots, v_{i}\right\}, 1 \leq i \leq n$, and $\forall v_{j} \epsilon\{H-D\}$ is adjacent to at least one $v_{i} \epsilon D$. Since each edge is a block in T, then D is a dominating set of $B(T)$. Suppose $B(T)$ is a path with even number of vertices. Then $v \in D$ is an end vertex in $B(T)$. Suppose $B(T)$ is a path with odd number of vertices. Then $v \notin D$. Hence $|D| \leq\left\lceil\frac{q+M(T)}{2}\right\rceil-1$.

Suppose T is not a path. Then there exists at least one vertex v with $\operatorname{deg} v \geq 3$. Let $L=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots, v_{k}\right\} \forall v_{k}, \operatorname{deg}\left[v_{k}\right] \geq 3$ and $E_{1}=\left\{e_{1}, e_{2}, e_{3}, \ldots \ldots \ldots, e_{k}\right\}$ be the edges in
T incident with $v_{k} \in L$. Suppose $E_{2} \subset E_{1}$ which are non end edges in T. Then $\left|E_{2}\right| \cup\left|E_{1}\right|=M$. Suppose $E_{3}=\left\{e_{1}, e_{2}, e_{3}, \ldots \ldots \ldots, e_{j}\right\}, 1 \leq j \leq k, E_{3} \subset\left\{E_{2} \cup E_{1}\right\} \forall v_{i} \in E_{3}$ is an element of E_{2} or E_{1} and hence $\left\{E_{3}\right\} \subset V[B(T)]$ and $\left\{E_{1} \cup E_{2} \cup E_{3}\right\}=D$ and $\left|E_{1} \cup E_{2} \cup E_{3}\right|=q+M$ thus $\left\{E_{1} \cup E_{2} \cup E_{3}\right\} \leq \frac{\left\{E_{1} \cup E_{2}\right\}+\{E(T)\}}{2}-1$ hence $\gamma_{s s b}(T) \leq\left\lceil\frac{q+M(T)}{2}\right\rceil-1$.

Theorem 11: For any (p, q) non-trivial tree $T \operatorname{and} B(T) \neq K_{P}$, then

$$
\gamma_{s s b}(T)+2 \gamma_{c}(T) \geq \gamma_{t}(T)+\Delta(T)
$$

Proof: Suppose G is a tree, $F=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots, v_{n}\right\}$ be the set of all end vertices of G and $V^{1}=V-F$. Then $D^{1} \subseteq V^{1}$ is a minimal connected dominating set of G. Further if $\left\{v_{j}\right\} \in$ $N\left(D^{1}\right)$ and $\left\{v_{j}\right\} \subseteq V^{1}$, then $D^{1} \cup v_{j}$ forms a minimal total dominating set of G. If $\left\{v_{j}\right\}=\emptyset$, then there exists at least one vertex $v \in F$ such that $D^{1} \cup\{v\}$ forms a total dominating set of G. Let $D=\left\{u_{1}, u_{2}, u_{3}, \ldots \ldots \ldots, u_{k}\right\}$ be the dominating set of $B(T)$. If the neighbors of each $u_{i} 1 \leq i \leq k$ are at a distance at least two which generates D to be a minimal dominating set of $B(T)$ such that $V[B(T)]-D=X$ where $\forall v_{i} \epsilon X$ is an isolates. Hence $|D|$ a $\gamma_{s s b}-$ set of T. Suppose $V^{1}=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots, v_{k}\right\} \subseteq V(G)$ such that $\operatorname{deg}\left(v_{i}\right) \geq 2,1 \leq i \leq k$. Then there exists at least one vertex $v \in V^{1}$ such that $\operatorname{deg}(v)=\Delta(T)$. Now we have $|D|+2\left|D^{1}\right| \geq$ $\left|D^{1} \cup\left\{v_{j}\right\}\right|+\Delta(T)$ which gives $\gamma_{s s b}(T)+2 \gamma_{c}(T) \geq \gamma_{t}(T)+\Delta(T)$.

Theorem 12: For any tree T and $B(T) \neq K_{P}$, then $i(T) \geq \gamma_{s s b}(T)$ where $i(T)$ is a independent domination number.

Proof: Suppose D be a dominating set of T. Let v be an end vertex of T and root the tree T at v. Let A be the set of all vertices in $V(T)-D$ that are dominated only from above by a vertex in D. Thus the parent of each vertex in A belongs to D and no child vertex of A belongs to D. Possibly $A=\emptyset$. Let $B=V(T)-(A \cup D)$. Then every vertex of B is dominated from below by D that is every vertex B has a child that belongs to D. Let B_{1} be those vertices in B adjacent to vertex in A. Then B_{1} is an independent set of T and dominates A (from below). We now extend B_{1} to an independent set B^{*} that dominates B by adding vertices in $B-B_{1}$. Then B^{*} dominates $A \cup B$. Let D_{1} be the set of all vertices of D that are dominated by B^{*} and $D_{1}=D \cap N\left(B^{*}\right)$. Since every vertex in B is dominated from below by at least one vertex of D, then $\left|B^{*}\right| \geq\left|D_{1}\right|$. Let
$D_{2}=D-D_{1}$, and let D^{*} be a maximal independent set of vertices of D_{2}. Then D^{*} dominates D_{2}. Further more $\left|D^{*}\right| \geq\left|D_{2}\right|$. By construction, $B^{*} \cup D^{*}$ is an independent dominating set of T. Hence $\left|B^{*} \cup D^{*}\right|=i(T)$. Since every block in $B(T)$ is complete and every cut vertex of $B(T)$ lies on exactly two blocks of $B(T)$. Let $k_{n_{1}} k_{n_{2}}, \ldots \ldots \ldots, k_{n_{m}}$ be the number of blocks which are complete. Then each block is complete with $\left\{v_{1}, v_{2}, \ldots \ldots \ldots, v_{n_{1}}\right\} \in k_{n_{1}}, \ldots \ldots\left\{v_{1}, v_{2}, \ldots \ldots \ldots, v_{n_{2}}\right\} \in k_{n_{2}}, \ldots \ldots \ldots\left\{v_{1}, v_{2}, \ldots \ldots \ldots, v_{n_{m}}\right\} \in k_{n_{m}}$, number of vertices.

Now assume S be a dominating set of $B(T)$ and
$S=\left\{v_{1}, v_{2}, \ldots \ldots \ldots, v_{i} ; v_{1}, v_{2}, \ldots \ldots \ldots, v_{j} ; v_{1}, v_{2}, \ldots \ldots \ldots, v_{k} \ldots \ldots \ldots, v_{Z}\right\}$ such that $1 \leq i \leq$ $n_{1} ; \ldots \ldots \ldots 1 \leq j \leq n_{2} ; \ldots \ldots \ldots 1 \leq Z \leq n_{m} ; \forall v_{i} \in k_{n_{1}} ; \ldots \ldots \ldots \forall v_{j} \in k_{n_{2}} ; \ldots \ldots \ldots \forall v_{Z} \in k_{n_{m}}$.
Now $V[B(T)]-S=H$ where each vertex of H is an isolates which gives $|S|=\gamma_{s s b}(T)$. Hence $\left|B^{*} \cup D^{*}\right| \geq|S|$ and we have $i(T) \geq \gamma_{s s b}(T)$.

Theorem 13: For any (p, q) graph G and $B(G) \neq K_{P}$, then $\gamma_{s s b}(G) \leq 3 q-2 p$.

Proof: suppose G has a block say B with maximum number of vertices and edges. Then $3 q-2 p$ is always more with $\gamma_{s s b}(G)$. Hence we require to get the sharp bound. For this we consider the graph G is a non-trivial tree with at least 3-blocks.

We consider the following cases.
Case 1: Suppose G is a path $P_{n}, n \geq 4$ vertices. Then $B(G)=P_{n-1}$. Since the path P_{n} has $p-$ vertices and $q-$ edges, then $3 q-2 p=3(p-1)-2 p=p-3$ for $P \geq 4$. One can easily verify that $\gamma_{s s b}(G) \leq p-3=3 q-2 p$.

Case 2: Suppose G is not a path. Then there exists at least one vertices $v, \operatorname{deg} v \geq 3$. Let $C=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots, v_{i}\right\}$ be the number cut vertices and D be a dominating set of $B(G)$. Suppose each block of $B(G)$ complete with P-vertices. Then $D=$ $\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots, v_{p-1}\right\}$ where D consists of $P-1$ vertices from each block $B(T)$ such that
$C \subseteq D$ and $V[B(T)]-D=H$, where $v_{i} \in H$ is an isolates, clearly $|D|=\gamma_{s s b}(T) \leq p-3=$ $3 q-2 p$.

Theorem 14: For any (p, q) non-trivial tree T and $B(T) \neq K_{n}$, then

$$
\gamma_{s s b}(T)+\gamma_{t}(T) \geq+P-\Delta(T)
$$

Proof: Suppose $B(T)=K_{n}$. Then by definition $\gamma_{s s b}(T)-$ set does not exist. Hence and $B(T) \neq K_{n}$. Assume T is a tree. Then every block of T is an edge. Let $A=\left\{B_{1}, B_{2}, B_{3}, \ldots \ldots, B_{n}\right\}$ be the blocks of T and $M=\left\{b_{1}, b_{2}, b_{3}, \ldots \ldots, b_{n}\right\}$ be the block vertices in $B(T)$ corresponding to the blocks of A.

Let $\left\{B_{i}\right\} \subset A$ such that each B_{i} is an non end block of T. Then $\left\{b_{i}\right\} \subseteq V[B(T)]$ which are vertices corresponding to the set $\left\{B_{i}\right\}$ since each block is complete in $B(T)$. Again we consider a subset $\left\{b_{i}{ }^{1}\right\}$ such that $\left\{b_{i}{ }^{1}\right\} \subset V[B(T)]-\left\{b_{i}\right\}$. Suppose there consists at least one edge then $V[B(T)]-\left\{b_{i}{ }^{1} \cup b_{i}\right\}=\left\{b_{k}\right\}$ where each element of b_{k} is an isolates. Then $\mid\left\{b_{i}{ }^{1} \cup\right.$ $b i\}=\gamma s s b T$. If $b i 1=\emptyset$, then $V B T-\{b i\}$ give at least two isolates such that $b i=\gamma s s b T$. Let $S \subseteq V[B(T)]$ is minimal total dominating set of T such that $\gamma_{t}(T)=|S|$. Now assume $\Delta(T) \leq$ 2. Then $T=P_{n}, n \geq 4$. Hence $P-\Delta(T) \leq\left|b_{i}{ }^{1}\right|+|S|$ which gives $\gamma_{s s b}(T)+\gamma_{t}(T) \geq+P-$ $\Delta(T)$.

Further if $\Delta(T) \geq 3$. Then there exists a positive integer j such that $j \leq P-\Delta(T)$. Also $j \leq$ $\left|b_{i}{ }^{1}\right|+|S|$ which gives $P-\Delta(T) \leq \gamma_{s s b}(T)+\gamma_{t}(T)$.

Finally we obtained the Nordhous-Gaddum type results.

Theorem 15: For any (p, q) graph G, and $B(G) \neq K_{P}$, then
I. $\quad \gamma_{s s b}(G)+\gamma_{s s b}(\bar{G}) \leq p$.
II. $\quad \gamma_{s s b}(G) \cdot \gamma_{s s b}(\bar{G}) \leq 2 p$.

References:

1. E.J.Cockayne, P.A.Dreyer. Jr,S.M.Hedetiniemi and S.T.Hedetiniemi, Roman domination in graphs, Discrete maths,278(2004),11-22.
2. F.Harary, graph Theory, Adison Wesley,Reading mass,(1972).
3. T.W.Haynes,S.T.Hedetiniemi and P.J.Slater, Fundamentals of domination in graphs. Marcel-Dekker,Inc.(1997).

[^0]: * Department of Mathematics Gulbarga University, Gulbarga-585106, Karnataka, India.

